Step of Proof: can-apply-fun-exp
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
can-apply-fun-exp
:
1.
A
: Type
2.
f
:
A
(
A
+ Top)
3.
n
:
4. 0 <
n
5.
y
:
A
. (
isl(
f
^
n
- 1(
y
)))
(
m
:
. (
m
(
n
- 1))
(
isl(
f
^
m
(
y
))))
6.
y
:
A
7.
m
:
8.
m
n
9.
(
m
= 0)
(
isl(
f
^
n
- 1 o
f
^1 (
y
)))
(
isl(
f
^
m
- 1 o
f
^1 (
y
)))
latex
by (RepUR ``p-compose can-apply do-apply`` ( 0)
)
CollapseTHEN (((GenConclAtAddr [1;1;1;1;1])
Co
CollapseTHENA (Auto
)
)
CollapseTHEN ((D (-2)
)
CollapseTHEN ((Reduce 0)
CollapseTHEN ((
C
Auto
)
CollapseTHEN (((if ((0) = 0) then BackThruSomeHyp else BHyp (0) )
)
CollapseTHEN (Auto
C
)
)
)
)
)
)
latex
C
.
Definitions
f
o
g
,
can-apply(
f
;
x
)
,
do-apply(
f
;
x
)
,
s
=
t
,
left
+
right
,
isl(
x
)
,
Top
,
f
(
a
)
,
f
^
n
,
,
{
x
:
A
|
B
(
x
)}
,
,
#$n
,
A
B
,
A
,
x
:
A
B
(
x
)
,
Void
,
a
<
b
,
n
-
m
,
n
+
m
,
-
n
,
b
,
P
Q
,
x
:
A
.
B
(
x
)
,
t
T
,
False
Lemmas
assert
wf
,
isl
wf
,
p-fun-exp
wf
,
le
wf
,
false
wf
origin